If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5r^2+8r-24=0
a = 5; b = 8; c = -24;
Δ = b2-4ac
Δ = 82-4·5·(-24)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{34}}{2*5}=\frac{-8-4\sqrt{34}}{10} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{34}}{2*5}=\frac{-8+4\sqrt{34}}{10} $
| 7w+3=241 | | B=85+(10+9)w | | -17+(n)/(5)=33 | | 5u=3u+10 | | 6(z-2)-4=10 | | 3z+2+4z= | | 10=q-4+ 7 | | -24+-20n=8 | | 1200=6t+3900 | | 3m^2+8m-11=0 | | 7b+4b=9b | | 1/3x+2.5x=1/2 | | 1/3(4(1/3x-1/4)+4/3x+1=6 | | 6.8x+400=46.24+20x | | 5(x-8)-4x=2x+2(3x+8) | | 7x+4x=9x | | (3x+4)^2-36=15x | | -6(x-2.5)=12 | | 3(r−15)=-3 | | 1.2h=3.12 | | 3x=-53 | | 4=-2/4(4.5p+25) | | −7x=63 | | 8.50x•55x=123 | | 55x+5x=340 | | 4.3=5.7-0.7x | | -x+148=202 | | 2.6x-12.52=8.8 | | 46=-v+194 | | 14.2=2(5.8+t) | | 38-x=176 | | 5g-8-10g+4=21 |